Deep Residual Learning for Image Recognition
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks.
Relations
Computer science is the study of computation and information. Computer science deals with theory of c...
Deep learning (also known as deep structured learning) is part of a broader family of machine learnin...
relates to Going deeper with convolutions
We propose a deep convolutional neural network architecture codenamed Inception that achieves the new...
Edit details Edit relations Attach new author Attach new topic Attach new resource
from 0 reviews
- Resource level 0.0 /10
- beginner intermediate advanced
- Resource clarity 0.0 /10
- hardly clear sometimes unclear perfectly clear
- Reviewer's background 0.0 /10
- none basics intermediate advanced expert