Sentiment Analysis with Deep Learning using BERT


Resource | v1 | created by coursera-bot |
Type Course
Created unavailable
Identifier unavailable

Description

In this 2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In fine-tuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Relations

relates to Deep learning

Deep learning (also known as deep structured learning) is part of a broader family of machine learnin...


Edit details Edit relations Attach new author Attach new topic Attach new resource
0.0 /10
useless alright awesome
from 0 reviews
Write comment Rate resource Tip: Rating is anonymous unless you also write a comment.
Resource level 0.0 /10
beginner intermediate advanced
Resource clarity 0.0 /10
hardly clear sometimes unclear perfectly clear
Reviewer's background 0.0 /10
none basics intermediate advanced expert
Comments 0
Currently, there aren't any comments.